Abstract

We have employed high-performance liquid chromatography (HPLC) to investigate the syntheses of histones H1 and H1o as synchronized cells traverse from mitosis to S phase. Chinese hamster (line CHO) cells were synchronized by mitotic selection, and, at appropriate times, they were pulse labeled for 1 h with [3H]lysine. Histones H1 and H1o were extracted by blending radiolabeled and carrier cells directly in 0.83 M HC1O4; the total HC1O4-soluble, Cl3CCO2H-precipitable proteins were then separated by a modification of an HPLC system employing three mu Bondapak reversed-phase columns [Gurley, L. R., D'Anna, J. A., Blumenfeld, M., Valdez, J. G., Sebring, R. J., Donahue, D. K., Prentice, D. A., & Spall, W. D. (1984) J. Chromatogr. 297, 147-165]. These procedures (1) produce minimally perturbed populations of synchronized proliferating cells and (2) maximize the recovery of radiolabeled histones during isolation and analysis. Measurements of rates of synthesis indicate that the rate of H1 synthesis increases (3.6 +/- 0.5)-fold as cells traverse from early to mid G1; as cells enter S phase, the rate of H1 synthesis increases an additional congruent to 22-fold and is proportional to the number of S-phase cells. In contrast to H1, the rate of H1o synthesis is nearly constant throughout G1. As cells progress into S phase, the rate of H1o synthesis increases (3.1 +/- 0.2)-fold so that it also appears to be proportional to the number of S-phase cells. Except for the first 1-2 h after mitotic selection, these results are similar to those obtained when cells are synchronized in G1 with the isoleucine deprivation procedure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call