Abstract

The contact fracture property and mechanism of electroplated Ni-P coating on stainless steel substrate were investigated using ball indentation testing, through a comprehensive experimental and numerical approach. First, the elastoplastic properties of both coating and substrate were evaluated using micro indentation tests. Next, ball indentation test with large contact force was performed, such that the brittle coating on ductile substrate suffers from cracks, including ring crack (propagates circumferentially) and radial cracks (propagates radially), owing to the coating bending effect. The fracture nucleation process was investigated using the acoustic emission technique (AET). In addition, finite element method (FEM) with cohesive zone model (CZM) was carried out to compute stress field and simulate crack initiation around the impression during the test. By using the comprehensive experimental/computational framework, the nucleation process (mechanism) of such a complicate crack system was clarified. The present technique and fracture mechanism may be applicable to the analysis of structural integrity of other brittle coatings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.