Abstract

CRISPR-Cas12a (Cpf1) trans-cleaves ssDNA and this feature has been widely harnessed for nucleic acid detection. Herein, we introduce a new type of Cas12a reporter, G-triplex (G3), and a highly sensitive biosensor termed G-CRISPR. We proved that Cas12a trans-cleaves G3 structures in about 10 min and G3 can serve as an excellent reporter based on the cleavage-induced high-order structure disruption. G3 reporter improves the analytical sensitivity up to 20 folds, enabling the detection of unamplified and amplified DNA as low as 50 pmol and 0.1 amol (one copy/reaction), respectively. G-CRISPR has been utilized for the analysis of 27 PCR-amplified patient samples with HPV infection risk based on both fluorescence and lateral flow assays, resulting in 100% concordance between the two. In comparison with the clinical results, it achieved overall specificity and sensitivity of 100% and 94.7%, respectively. These results suggest that G-CRISPR can serve as a rapid, sensitive, and reliable biosensor, and could further expand the CRISPR toolbox in biomedical diagnostics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.