Abstract

A 1.8-m paraboloidal reflector fed by a dipole-disk antenna with a beamforming ring is optimized for high G/T at L-band by using the moment method (MM) and the multiple reflection (MR) approach. The MR approach is based on using MM to calculate the radiation and scattering patterns of the feed, using physical optics plus uniform geometrical theory of diffraction (UTD) to include the reflector, and in addition to include the mutual interaction (multiple reflections) between the reflector and the feed by using the expression for the sum of an infinite geometric series. The MR approach is shown to be equally accurate as a MM solution of the complete antenna with reflector, provided the reflector is in the far field of the feed, and the MR approach is much faster. As a result of the calculations using the MR approach, design curves are presented showing how the G/T varies as a function of antenna geometry, size, and elevation angle, all for a given noise profile of the surrounding sky and ground. The computed radiation patterns and G/Ts are compared with measurements for several elevation angles and surrounding terrain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.