Abstract

Designing new electrode materials with higher capacity is the key to improve energy density of potassium ion batteries. It is well known that graphene has a low capacity but with high stability, while silicene just opposite. Inspired by this, first-principles calculations were used to evaluate whether siligraphene, the combination of monolayer silicon and monolayer carbon is suitable for Potassium-ion batteries (KIBs) anode material. Our results show that siligraphene not only own high stability of graphene but also own high capacity of silicene. And the theoretic capacity of g-SiC5 and g-Si2C4 are 304.1 mA h/g and 128.6 mA h/g respectively for KIB. The average voltage is about 0.4 V, 0.3 V for g-SiC5 and g-Si2C4. Meanwhile, based on the NEB calculations the low energy barrier of potassium ions diffused on the 2D-siligraphene, with the diffusion barrier is 132 meV for Si2C4 and 23 meV for SiC5, show that this kind of anode materials might process a high migration rate; moreover, from the bandstructure calculations we might deduced that after absorbing potassium ion, siligraphene show excellent electrical conductivity. The molecular dynamics (MD) calculations were also show good stability of siligraphene absorbed potassium ion. Thus, siligraphene is promising anode material candidate for KIBs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.