Abstract

In this paper, we present the design and implementation of Green Route (G-Route), an autonomic service routing protocol for constructing energy-efficient provider paths in collaborative cloud architectures. The chief contribution of this work resides in autonomously selecting the optimal set of composite service components sustaining the most efficient energy consumption characteristics among a set of providers for executing a particular service request. For ensuring the accountability of the system, the routing decision engine is designed to operate by processing accountable energy measurements extracted securely from within the cloud data centers using trusted computing technologies and cryptographic mechanisms. By pushing green computing constraints into the service routing decision engine, we can leverage the collaborative cloud computing model to maximize the energy savings achieved. This is realized by focusing on a path of providers that execute the service requests instead of directing the green computing efforts towards a single provider site. To the best of our knowledge, G-Route is the first service routing protocol that utilizes the collaborative properties among cloud providers to select "green" service routes and thus, to enhance the energy savings in the overall cloud computing infrastructure. The devised G-Route design is developed and deployed in a real cloud computing environment using the Amazon EC2 cloud platform. The experimental results obtained analyze the protocol convergence characteristics, traffic overhead, and resilience under anomalous service configurations and conditions and demonstrate the capability of the proposed system to significantly reduce the overall energy requirements of collaborative cloud services.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.