Abstract
Molecularly imprinted polymers (MIPs) provide versatile sensor platforms to recognize targets by shape complementarity. However, the rigid structure of the classic MIPs compromises the signal transduction with necessary polymer and target modifications. Herein, we tried to use a flexible DNA that has a perfectly structured folding as the soft molecularly imprinted polymer (SMIP) for a straightforward sensor. As a proof of concept, the guanosine SMIP recognition was achieved by removal of a guanosine from a G-quadruplex-forming sequence (G4). The G4 folding structure with such an apurinic site (AP site) provides a well-defined MIP binding accommodation for guanosine according to the shape complementarity. The guanosine binding at the AP site subsequently leads to a conformation change suitable for remote readout using a G4-specific fluorescent ligand. The G4 sequence and AP site position were optimized for this SMIP behavior. Due to the G4 compact structure and the remaining hydrogen bonding pattern, nucleosides other than guanosine and negatively charged nucleotides exhibit no binding with the AP site, suggesting a high selectivity in the SMIP recognition. The proposed rationale was then convinced by the alkaline phosphatase-catalyzed GMP hydrolysis. Our work will inspire more interest in exploring nucleic acids as the SMIP frameworks due to their variant conformations and well-established molecular engineering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.