Abstract

A colorimetric method was developed usingG-quadruplex and gold nanoparticles (AuNPs) for determination of Escherichia coli K88 (ETEC K88). It was composed of two modules: (1) an aptamer as biorecognizing element and (2) a capturing DNA (modified with AuNPs at 5') as a transducer. In the absence of target bacteria, the aptamer can form stable double strands with capturing DNA, preventing the binding of capturing DNA to the G-quadruplex. However, the double strands of capturing DNA and aptamer are untied due to the stronger binding of aptamers to bacteria in the presence of target bacteria. As a result, the G-quadruplex binds to capture DNA and leads to the aggregation and color change of AuNPs, which can be monitored by a spectrophotometer or visualization. The quantitative determination was achieved by monitoring the optical density change of AuNPs solution at 524nm after target addition. Under optimal conditions, the method has a low detection limit (1.35 × 102CFUmL-1) and a linear response in the range102 to 106CFUmL-1. Graphical abstract The manuscripts describe a colorimetric method for the detection of ETEC K88 by using intermolecular G-quadruplex to induce the agglomeration of gold nanoparticles, which can be directly used to determine the presence of bacteria with our naked eyes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call