Abstract

In this paper, three new Ruthenium(II) polypyridyl complexes containing ascididemin (ASC) as main ligand have been synthesized and characterized. Their interactions with different G-quadruplex (Htelo, c-myc and c-kit) (Htelo: human telomeric DNA, c-myc: cellular-myelocytomatosis viral oncogene, c-kit: oncogene c-kit promoter sequences) and duplex (ds26) DNA sequences were comparatively studied with the free ligand ASC by a series of spectroscopic techniques including UV–vis (ultraviolet-visible) spectroscopy, FID (fluorescent intercalator displacement) assay, and FRET (fluorescence resonance energy transfer) melting assay. Molecular docking studies were also performed to support the binding mode of the compounds with G-quadruplex DNA. Results indicated that [Ru(bpy)2ASC]·(PF6)2 (1), [Ru(phen)2ASC]·(PF6)2 (2), [Ru(tatp)2ASC]·(PF6)2 (3) (bpy = 2,2′‑bipyridine, phen = 1,10‑phenanthroline, tatp = 1,4,8,9‑tetra‑aza‑triphenylene) and ASC can effectively bind G-quadruplex and duplex DNA and stabilization ability lies in the order 3 > 2 > 1 > ASC. Complex 3 was determined to be the most promising candidate for further in vitro studies and potential anticancer drug.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.