Abstract

The recently introduced semi-orthogonal system of nucleic acid imaging offers a greatly improved method of identifying DNA sequences that are capable of adopting noncanonical structures. This paper uses our newly developed G-QINDER tool to identify specific repeat sequences that adopt unique structural motifs in DNA: TG and AG repeats. The structures were found to adopt a left-handed G-quadruplex form under extreme crowding conditions and a unique tetrahelical motif under certain other conditions. The tetrahelical structure likely consists of stacked AGAG-tetrads but, unlike G-quadruplexes, their stability does not appear to be dependent on the type of monovalent cation present. The occurrence of TG and AG repeats in genomes is not rare, and they are also found frequently in the regulatory regions of nucleic acids, so it is reasonable to assume that putative structural motifs, like other noncanonical forms, could play an important regulatory role in cells. This hypothesis is supported by the structural stability of the AGAG motif; its unfolding can occur even at physiological temperatures since the melting temperature is primarily dependent on the number of AG repeats in the sequence.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call