Abstract

Nitrogen is a key nutrient for plant growth and development. Plants regulate nitrogen availability and uptake efficiency through controlling root architecture. While the heterotrimeric G protein complex is an important element to regulate root morphology, it remains unknown whether the G protein regulates the root architecture in response to nitrogen supply. We used rice and Arabidopsis G protein mutants to study the root architecture in response to different nitrogen concentrations. We found that nitrogen inhibits root horizontal projection area (network area), root perimeter, total length, but not root diameter (average root width). Nitrogen influenced bushiness and root spatial distribution by inhibiting horizontal growth and promoting vertical expansion. The dynamic changes of the rice G protein mutant DK22 at different concentrations of nitrogen from day 7 to day 9 were different from the wild type with regard to bushiness and spatial distribution. The agb1-2 mutant in Arabidopsis lacked the inhibitory effect of nitrate on root growth. The heterotrimeric G protein complex regulates the inhibitory effect on root growth caused by high nitrogen supply and root spatial distribution in response to different nitrogen concentrations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.