Abstract

Rabies, caused by rabies virus (RABV), is an ancient zoonotic disease that significantly affects human and animal health throughout the world. RABV causes acute encephalitis in mammals with a high fatality rate in developing countries. G protein-coupled receptor 17 (GPR17) is a vital gene in the central nervous system (CNS) that plays important roles in demyelinating diseases and ischemia brain. However, it is still unclear whether GPR17 participates in the regulation of RABV infection. Here, we found that upregulation or activation of GPR17 can reduce the virus titer; conversely, the inactivation or silence of GPR17 led to increased RABV replication in N2a cells. The recombinant RABV expressing GPR17 (rRABV-GPR17) showed reduced replication capacity compared to the parent virus rRABV. Moreover, overexpression of GPR17 can attenuate RABV pathogenicity in mice. Further study demonstrated that GPR17 suppressed RABV replication via BAK-mediated apoptosis. Our findings uncover an unappreciated role of GPR17 in suppressing RABV infection, where GPR17 mediates cell apoptosis to limit RABV replication and may be an attractive candidate for new therapeutic interventions in the treatment of rabies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.