Abstract
Activation of GPER exerts a protective effect in hypertension and ischemia-reperfusion models and relaxes arteries in vitro. However, our understanding of the mechanisms of GPER-mediated vascular regulation is far from complete. In the current study, we tested the hypothesis that GPER-induced relaxation of porcine coronary arteries is mediated via cAMP/PKA signaling. Our findings revealed that vascular relaxation to the selective GPER agonist G-1 (0.3-3 μM) was associated with increased cAMP production in a concentration-dependent manner. Furthermore, inhibition of adenylyl cyclase (AC) with SQ-22536 (100 μM) or of PKA activity with either Rp-8-CPT-cAMPS (5 μM) or PKI (5 μM) attenuated G-1-induced relaxation of coronary arteries preconstricted with PGF2α (1 μM). G-1 also increased PKA activity in cultured coronary artery smooth muscle cells (SMCs). To determine downstream signals of the cAMP/PKA cascade, we measured RhoA activity in cultured human and porcine coronary SMCs and myosin-light chain phosphatase (MLCP) activity in these artery rings by immunoblot analysis of phosphorylation of myosin-targeting subunit protein-1 (p-MYPT-1; the MLCP regulatory subunit). G-1 decreased PGF2α-induced p-MYPT-1, whereas Rp-8-CPT-cAMPS prevented this inhibitory effect of G-1. Similarly, G-1 inhibited PGF2α-induced phosphorylation of MLC in coronary SMCs, and this inhibitory effect was also reversed by Rp-8-CPT-cAMPS. RhoA activity was downregulated by G-1, whereas G36 (GPER antagonist) restored RhoA activity. Finally, FMP-API-1 (100 μM), an inhibitor of the interaction between PKA and A-kinase anchoring proteins (AKAPs), attenuated the effect of G-1 on coronary artery relaxation and p-MYPT-1. These findings demonstrate that localized cAMP/PKA signaling is involved in GPER-mediated coronary vasodilation by activating MLCP via inhibition of RhoA pathway.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Physiology-Endocrinology and Metabolism
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.