Abstract

Inhibition of Na(+),K(+)-ATPase (NKA) activity in renal epithelial cells by activation of G protein-coupled receptors is mediated by phosphorylation of the catalytic alpha-subunit followed by endocytosis of active molecules. We examined whether agonists that counteract this effect do so by dephosphorylation of the alpha-subunit or by preventing its internalization through a direct interaction with the endocytic network. Oxymetazoline counteracted the action of dopamine on NKA activity, and this effect was achieved not by preventing alpha-subunit phosphorylation, but by impaired endocytosis of alpha-subunits into clathrin vesicles and early and late endosomes. Dopamine-induced inhibition of NKA activity and alpha-subunit endocytosis required the interaction of adaptor protein 2 (AP-2) with the catalytic alpha-subunit. Phosphorylation of the alpha-subunit is essential because dopamine failed to promote such interaction in cells lacking the protein kinase C phosphorylation residue (S18A). Confocal microscopy confirmed that oxymetazoline prevents incorporation of NKA molecules into clathrin vesicles by inhibiting the ability of dopamine to recruit clathrin to the plasma membrane. Dopamine decreased the basal levels of inositol hexakisphosphate (InsP(6)), whereas oxymetazoline prevented this effect. Similar increments (above basal) in the concentration of InsP(6) induced by oxymetazoline prevented AP-2 binding to the NKA alpha-subunit in response to dopamine. In conclusion, inhibition of NKA activity can be reversed by preventing its endocytosis without altering the state of alpha-subunit phosphorylation; increased InsP(6) in response to G protein-coupled receptor signals blocks the recruitment of AP-2 and thereby clathrin-dependent endocytosis of NKA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.