Abstract
G-protein-coupled receptors (GPCRs) are the largest family of cell surface receptors that, via trimetric guanine nucleotide-binding proteins (G-proteins), initiate some signaling pathways in the eukaryotic cell. Many diseases involve malfunction of GPCRs making their role evident in drug discovery. Thus, the automatic prediction of GPCRs can be very helpful in the pharmaceutical industry. However, prediction of GPCRs, their families, and their subfamilies is a challenging task. In this article, GPCRs are classified into families, subfamilies, and sub-subfamilies using pseudo-amino-acid composition and multiscale energy representation of different physiochemical properties of amino acids. The aim of the current research is to assess different feature extraction strategies and to develop a hybrid feature extraction strategy that can exploit the discrimination capability in both the spatial and transform domains for GPCR classification. Support vector machine, nearest neighbor, and probabilistic neural network are used for classification purposes. The overall performance of each classifier is computed individually for each feature extraction strategy. It is observed that using the jackknife test the proposed GPCR–hybrid method provides the best results reported so far. The GPCR–hybrid web predictor to help researchers working on GPCRs in the field of biochemistry and bioinformatics is available at http://111.68.99.218/GPCR.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.