Abstract

G protein-coupled estrogen receptor (GPER) is a relatively recently identified non-nuclear estrogen receptor, expressed in several tissues, including brain and blood vessels. The mechanisms elicited by GPER activation in brain microvascular endothelial cells are incompletely understood. The purpose of this work was to assess the effects of GPER activation on cytosolic Ca(2+) concentration, [Ca(2+)](i), nitric oxide production, membrane potential and cell nanomechanics in rat brain microvascular endothelial cells (RBMVEC). Extracellular but not intracellular administration of G-1, a selective GPER agonist, or extracellular administration of 17-β-estradiol and tamoxifen, increased [Ca(2+)](i) in RBMVEC. The effect of G-1 on [Ca(2+)](i) was abolished in Ca(2+) -free saline or in the presence of a L-type Ca(2+) channel blocker. G-1 increased nitric oxide production in RBMVEC; the effect was prevented by NG-nitro-l-arginine methyl ester. G-1 elicited membrane hyperpolarization that was abolished by the antagonists of small and intermediate-conductance Ca(2+) -activated K(+) channels, apamin, and charibdotoxin. GPER-mediated responses were sensitive to G-36, a GPER antagonist. In addition, atomic force microscopy studies revealed that G-1 increased the modulus of elasticity, indicative of cytoskeletal changes and increase in RBMVEC stiffness. Our results unravel the mechanisms underlying GPER-mediated effects in RBMVEC with implications for the effect of estrogen on cerebral microvasculature. Activation of the G protein-coupled estrogen receptor (GPER) in rat brain microvascular endothelial cells (RBMVEC) increases [Ca(2+)](i) by promoting Ca(2+) influx. The increase in [Ca(2+)](i) leads to membrane hyperpolarization, nitric oxide (NO) production, and to cytoskeletal changes and increased cell stiffness. Our results unravel the mechanisms underlying GPER-mediated effects in RBMVEC with implications for the effect of estrogen on cerebral microvasculature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.