Abstract

Heterotrimeric G proteins (G proteins) have been extensively investigated for their regulatory functions in morphogenesis and development in filamentous fungi. In addition, G proteins were also shown to be involved in the regulation of cellulase expression in some fungi. Here, we report the different regulatory effects of PGA3, a group III G protein α subunit, on the expressions of amylases and cellulases in Penicillium decumbens. Deletion of pga3 resulted in impaired amylase production and significantly decreased transcription of the major amylase gene amy15A. Supplementation of exogenous cAMP or its analog dibutyryl-cAMP restored amylase production in Δpga3 strain, suggesting an essential role of PGA3 in amylase synthesis via controlling cAMP level. On the other hand, the transcription of major cellulase gene cel7A-2 increased, nevertheless cellulase activity in the medium was not affected, in Δpga3. The above regulatory effects of PGA3 are carbon source-independent, and are achieved, at least, by cAMP-mediated regulation of the expression level of transcription factor AmyR. The functions of PGA3 revealed by gene deletion were partially supported by the analysis of the mutant carrying dominantly-activated PGA3. The results provided new insights into the understanding of the physiological functions of G protein-cAMP pathway in filamentous fungi.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.