Abstract

Antidepressants, including tricyclic antidepressants (TCAs) and selective serotonin reuptake inhibitors (SSRIs), have been widely used for the treatment of not only depression but also other psychiatric disorders, although the molecular mechanisms of the drug effects have not yet been sufficiently revealed. Here, we investigated the in vivo effects of these antidepressants on G protein-activated inwardly rectifying K + (GIRK) channels, which are important for regulating the excitability of various cells, by using weaver ( w v ) mice, which have mutant GIRK channels and show abnormal neuronal cell death and motor disturbances. First, we found that a widely used SSRI fluoxetine (also known as Prozac) effectively inhibited w v GIRK2 channels like wild-type GIRK channels, expressed in Xenopus oocytes. Next, we found that weaver motor disturbances were remarkably alleviated by chronic treatment with fluoxetine or desipramine. Furthermore, the chronic fluoxetine treatment substantially suppressed the abnormal neuronal cell death in the weaver mouse cerebellum and pontine nuclei. These results suggest that continuous inhibition of w v GIRK2 channels by a group of antidepressants caused substantial suppression of the neuronal cell death and resulted in improvement of motor abilities in weaver mice. These results provide evidence for in vivo GIRK channel inhibition by a group of antidepressants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.