Abstract

We present novel randomized algorithms for solving global motion planning problems that exploit the computational capabilities of many-core GPUs. Our approach uses thread and data parallelism to achieve high performance for all components of sample-based algorithms, including random sampling, nearest neighbor computation, local planning, collision queries and graph search. The approach can efficiently solve both the multi-query and single-query versions of the problem and obtain considerable speedups over prior CPU-based algorithms. We demonstrate the efficiency of our algorithms by applying them to a number of 6DOF planning benchmarks in 3D environments. Overall, this is the first algorithm that can perform real-time motion planning and global navigation using commodity hardware.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.