Abstract
Learning problems for Neural Network (NN) has widely been explored in the past two decades. Researchers have focused more on population-based algorithms because of its natural behavior processing. The population-based algorithms are Ant Colony Optimization (ACO), Artificial Bee Colony (ABC), and recently Hybrid Ant Bee Colony (HABC) algorithm produced an easy way for NN training. These social based techniques are mostly used for finding best weight values and over trapping local minima in NN learning. Typically, NN trained by traditional approach, namely the Backpropagation (BP) algorithm, has difficulties such as trapping in local minima and slow convergence. The new method named Global Hybrid Ant Bee Colony (G-HABC) algorithm which can overcome the gaps in BP is used to train the NN for Boolean Function classification task. The simulation results of the NN when trained with the proposed hybrid method were compared with that of Levenberg-Marquardt (LM) and ordinary ABC. From the results, the proposed G-HABC algorithm has shown to provide a better learning performance for NNs with reduced CPU time and higher success rates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Applied Metaheuristic Computing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.