Abstract

The two-dimensional (2D) hole gas at the surface of transfer-doped diamond shows quantum-mechanical interference effects in magnetoresistance in the form of weak localization and weak antilocalization (WAL) at temperatures below about 5 K. Here we use the quenching of the WAL by an additional magnetic field applied parallel to the 2D plane to extract the magnitude of the in-plane $g$-factor of the holes and fluctuations in the well width as a function of carrier density. Carrier densities are varied between 1.71 and $4.35\ifmmode\times\else\texttimes\fi{}{10}^{13}\phantom{\rule{0.16em}{0ex}}\mathrm{c}{\mathrm{m}}^{\ensuremath{-}2}$ by gating a Hall bar device with an ionic liquid. Over this range, calculated values of $|g|$ vary between 1.6 and 2.3 and the extracted well-width variation drops from 3 to 1.3 nm rms over the phase coherence length of 33 nm for a fixed geometrical surface roughness of about 1 nm as measured by atomic force microscopy. Possible mechanisms for the extracted variations in the presence of the ionic liquid are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.