Abstract

Combinatorial optimization problem (COP) is an NP-hard problem for which finding an optimal solution is difficult, especially as the problem size increases. The Traveling Salesman Problem (TSP), one of the COPs that can be formulated over a graph, is a well-researched area in operations research and computer science. Deep Reinforcement Learning (DRL) is now regarded as a promising approach for solving TSP and other NP hard problems. In this paper, we propose a novel Gated Deep Graph Attention Network (G-DGANet) which builds upon the existing Graph Neural Network (GNN) to solve TSP. The proposed G-DGANet uses gating mechanism between subsequent layers of the network to extract representations of nodes deeper in the network without loss in performance. G-DGANet also designs a novel aggregator to construct global graph embeddings from different embedding preferences. In addition, to effectively learn underlying structure of a graph, G-DGANet integrates node and edge information of the graph while updating node representations in the message passing mechanism. We used proximal policy optimization (PPO) to train G-DGANet on randomly generated instances. We conducted an experiment on randomly generated instances and on real-world road network data generated from digital maps to verify the performance of G-DGANet. The findings from experiments demonstrate that G-DGANet outperforms most traditional heuristics and existing DRL approaches, with high generalization abilities from random instance training to random instance testing and real-world road network instance testing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.