Abstract

Myeloid-derived suppressor cells (MDSC) are a heterogeneous population of immature myeloid cells that expand in inflammatory conditions including transplantation. MDSCs may be capable of controlling rejection. The critical mechanisms underlying MDSC mediated alloregulation remain unexplored. G-CSF potently stimulates MDSC expansion. We hypothesized that G-CSF-induced MDSCs use a novel mechanism to suppress T cell responses. G-CSF promoted expansion of MDSCs and enhanced their suppressive function against T cell proliferation. Gene expression analysis revealed MDSCs expanded with G-CSF upregulated immune-related genes, but downregulated proliferation-related genes when compared to naïve control MDSCs. The KIT oncogene, encoding the c-Kit (CD117) transmembrane tyrosine kinase receptor, was the most significantly increased in MDSCs expanded with G-CSF. c-Kit inhibition with both imatinib and monoclonal blocking antibody reduced expression of ARG-1, iNOS, PD-L1, and SAA3. Further, imatinib also reduced MDSC-mediated T cell suppression in vitro. Modulation of c-Kit activity may represent a therapeutic target for alloregulatory MDSCs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.