Abstract

Neutrophils play an important role in the innate immune response against bacterial and fungal infections. They have a short lifespan in circulation, and their survival can be modulated by several cytokines, including G-CSF. Previous studies have implicated AKT as a critical signaling intermediary in the regulation of neutrophil survival. Our results demonstrate that G-CSF activation of AKT is not sufficient to prolong neutrophil survival. Neutrophils treated with G-CSF undergo apoptosis, even in the presence of high levels of p-AKT. In addition, inhibitors of AKT and downstream targets failed to alter neutrophil survival. In contrast, neutrophil precursors appear to be dependent on AKT signaling pathways for survival, whereas high levels of p-AKT inhibit proliferation. Our data suggest that the AKT/mTOR pathway, although important in G-CSF-driven myeloid differentiation, proliferation, and survival of early hematopoietic progenitors, is less essential in G-CSF suppression of neutrophil apoptosis. Whereas basal AKT levels may be required for the brief life of neutrophils, further p-AKT expression is not able to extend the neutrophil lifespan in the presence of G-CSF.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.