Abstract
Since the first discovery of solar-driven water splitting catalyzed by TiO2semiconductors, extensive research works have been devoted over the decades. Currently, the design of a photocatalyst with dual redox potential is of prominent interest to fully utilize both photogenerated electrons and holes in the redox reactions. Among all, the coproduction of H2and O2from water using metal-free carbon nitride (g-C3N4) has been viewed as a rising star in this field. However, the hole-mediated oxidation reaction is commonly recognized as the rate-determining step, which drastically leads to poor overall water splitting efficiency. On top of that, rapid recombination and undesirable back reaction appeared as one of the challenging parts in overall water splitting. In this review, the up-to-date advances in modified g-C3N4-based photocatalysts toward efficient overall water splitting are summarized, which are mainly classified into structural and defect engineering, single-atom catalysis, cocatalyst loading, and heterojunction construction. This review also addresses the underlying idea and concept to tackle the aforementioned problem with the use of emerging modification strategies, hence serving as the guiding star for future research. Despite the outstanding breakthrough thus far, critical recommendations related to g-C3N4photocatalytic systems are prospected to pave the way toward the implementation in the practical energy production process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.