Abstract

Dye-sensitized solar cells (DSSCs) were fabricated by using g-C3N4 modified TiO2 nanosheets (CTS) as photoanode materials in this research. A thin layer of g-C3N4 was coated on the surface of TiO2 nanosheets by simply heating the mixture of TiO2 nanosheets and urea, which led to the formation of TiO2@g-C3N4 nanosheet heterostructure. The experimental results showed that the photoelectric conversion efficiency of DSSCs was obviously improved after modified by g-C3N4. The measurements of I–V characteristic indicated that the introduction of g-C3N4 could increase both the open circuit voltage and short-circuit photocurrent density. Along with the analysis of electrochemical impedance spectroscopy, it is considered that the thin layer of g-C3N4 can act as the blocking layer for electron backward recombination with electrolyte, which can be used as the functional material to increase the DSSC performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call