Abstract

Heterojunction is an effectively construction to improve the photocatalytic activity due to the excellent photo-induced carrier separation efficiency. In this paper, g-C3N4/Bi4O5I2 heterojunction was prepared and characterized by X-ray diffraction patterns (XRD), field emission scanning electron microscope (FESEM), transmission electron microscopy (TEM), UV–vis diffuse reflectance spectra (DRS) and X-ray photoelectron spectroscopy (XPS). The photocatalytic data showed that g-C3N4/Bi4O5I2 heterojunction had higher activity than pure g-C3N4 and Bi4O5I2. At an optimal ratio of 1.0mol% (11.4wt% of Bi4O5I2), g-C3N4/Bi4O5I2 photocatalyst showed the highest photocatalytic reduction activity for CO2 conversion with 45.6μmolh−1g−1 CO generation. Photocurrent and electrochemical impedance (EIS) spectroscopy revealed that higher photo-induced carrier separation efficiency of g-C3N4/Bi4O5I2. Z-scheme charge transfer mode was proved by I3−/I− redox mediator existence and superoxide radical (O2−) and hydroxyl radical (OH) quantification experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.