Abstract

Multimodal sarcasm detection, aiming to detect the ironic sentiment within multimodal social data, has gained substantial popularity in both the natural language processing and computer vision communities. Recently, graph-based studies by drawing sentimental relations to detect multimodal sarcasm have made notable advancements. However, they have neglected exploiting graph-based global semantic congruity from existing instances to facilitate the prediction, which ultimately hinders the model's performance. In this paper, we introduce a new inference paradigm that leverages global graph-based semantic awareness to handle this task. Firstly, we construct fine-grained multimodal graphs for each instance and integrate them into semantic space to draw graph-based relations. During inference, we leverage global semantic congruity to retrieve k-nearest neighbor instances in semantic space as references for voting on the final prediction. To enhance the semantic correlation of representation in semantic space, we also introduce label-aware graph contrastive learning to further improve the performance. Experimental results demonstrate that our model achieves state-of-the-art (SOTA) performance in multimodal sarcasm detection. The code will be available at https://github.com/upccpu/G2SAM.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.