Abstract

Purpose The rope-climbing robot that can cling to a rope for locomotion has been a popular piece of equipment for some overhead applications due to its high flexibility. In view of problems left by existing rope-climbing robots, this paper aims to propose a new-style rope-climbing robot named Finger-wheeled mechanism robot (FWMR)-II to improve their performance. Design/methodology/approach FWMR-II adopts a modular and link-type mechanical structure. With the finger-wheeled mechanism (FWM) module, the robot can achieve smooth and quick locomotion and good capability of obstacle-crossing on the rope and with the link module based on a spatial parallel mechanism, the robot adaptability for rope environments is improved further. The kinematic models that can present configurations of the FWM module and link module of the robot are established and for typical states of the obstacle-crossing process, the geometric definitions and constraints that can present the robot position relative to the rope are established. The simulation is performed with the optimization calculating method to obtain the robot adaptability for rope environments and the experiment is also conducted with the developed prototype to verify the robot performance. Findings From the simulation results, the adaptability for rope environments of FWMR-II are obtained and the advantage of FWMR-II compared with FWMR-I is also proved. The experiment results give a further verification for the robot design and analysis work. Practical implications The robot proposed in this study can be used for inspection of power transmission lines, inspection and delivery in mine and some other overhead applications. Originality/value An ingenious modular link-type robot is proposed to improve existing rope-climbing robots and the method established in this study is worthy of reference for obstacle-crossing analysis of other rope-climbing robots.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.