Abstract

Zinc finger proteins can induce plant resistance and activate the expression of molecules involved in the resistance pathway in response to harsh environmental conditions. Previously, we found that a novel Fragaria vesca zinc finger protein interacts with the P6 protein encoded by a strawberry vein banding virus. However, the molecular mechanism of the zinc finger protein in plant stress resistance is still unknown. In this study, we reported the identification and functional characterization of the RING finger and CHY zinc finger domain-containing protein 1 (FvZFP1). The overexpression of FvZFP1 in Nicotiana benthamiana enhanced resistance to tobacco mosaic virus (TMV) and Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) infection by increasing ROS content. Additionally, FvZFP1 overexpression upregulated salicylic acid (SA) response-related gene expression as well as SA accumulation following TMV and Pst DC3000 infection. Furthermore, FvZFP1 overexpression resulted in increased salinity and drought stress tolerance by increasing SOD activity and decreasing MDA content. Overexpression of FvZFP1 also activated the ABA pathway under salinity or drought conditions. To our knowledge, this is the first study on the involvement of F. vesca zinc finger protein in crosstalk between biotic and abiotic stress signaling pathways, suggesting that FvZFP1 is a candidate gene for the improvement of resistance in response to multiple stresses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.