Abstract
The WRKY transcription factors play important roles in plant growth and resistance, but only a few members have been identified in strawberry. Here we identified a WRKY transcription factor, FvWRKY50, in diploid strawberry which played essential roles in strawberry vegetative growth, and reproductive growth. Knocking out FvWRKY50 by genome editing accelerated flowering time and leaf senescence but delayed anthocyanin accumulation in fruit. Further analysis showed that FvWRKY50 acted as a transcriptional repressor to negatively regulate the expression of flowering- and leaf senescence-related genes, including FvFT2, FvCO, FvFT3, and FvSAUR36. Notably, FvWRKY50 directly upregulated the expression of FvCHI and FvDFR by binding their promoter under normal conditions, but at low temperature FvWRKY50 was phosphorylated by FvMAPK3 and then induced protein degradation by ubiquitination, delaying anthocyanin accumulation. In addition, the homozygous mutant of FvWRKY50 was smaller while the biallelic mutant showed normal size. These new findings provide important clues for us to further reveal the regulatory mechanisms of strawberry growth and fruit ripening.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.