Abstract

We have investigated the mechanisms by which alleles at the mouse Fv-1 locus restrict replication of murine leukemia viruses. Inhibition of productive infection is closely paralleled by reduced accumulation of integrated proviral DNA as well as by reduced levels of linear viral DNA in a cytoplasmic fraction. Nevertheless, viral DNA is present at nearly normal levels in a nuclear fraction, and total amounts of viral DNA are only mildly affected in restrictive infections, suggesting a block in integration to account for reduced levels of proviral DNA. However, integrase (IN)-dependent trimming of 3' ends of viral DNA occurs normally in vivo during restrictive infections, demonstrating that not all IN-mediated events are prevented in vivo. Furthermore, viral integration complexes present in nuclear extracts of infected restrictive cells are fully competent to integrate their DNA into a heterologous target in vitro. Thus, the Fv-1-dependent activity that restricts integration in vivo may be lost in vitro; alternatively, Fv-1 restriction may prevent a step required for integration in vivo that is bypassed in vitro.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.