Abstract

This paper investigates the problem of output feedback robust $\mathscr{H}_{\infty }$ control for a class of nonlinear spatially distributed systems described by first-order hyperbolic partial differential equations (PDEs) with Markovian jumping actuator faults. The nonlinear hyperbolic PDE systems are first expressed by Takagi–Sugeno fuzzy models with parameter uncertainties, and then, the objective is to design a reliable distributed fuzzy static output feedback controller guaranteeing the stochastic exponential stability of the resulting closed-loop system with certain $\mathscr{H}_{\infty }$ disturbance attenuation performance. Based on a Markovian Lyapunov functional combined with some matrix inequality convexification techniques, two approaches are developed for reliable fuzzy static output feedback controller design of the underlying fuzzy PDE systems. It is shown that the controller gains can be obtained by solving a set of finite linear matrix inequalities based on the finite-difference method in space. Finally, two examples are presented to demonstrate the effectiveness of the proposed methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.