Abstract

SummaryThis article investigates the switched fault‐tolerant tracking control techniques for a permanent magnet synchronous generator (PMSG)‐based variable‐speed wind energy conversion system (WECS) subject to actuator faults. To do this, a Takagi‐Sugeno fuzzy model is exploited to delineate the nonlinear WECS composed of a PMSG and wind turbine. By using the switching technique and Lyapunov functional including membership function information, fault‐tolerant tracking control is proposed to effectively track the optimal trajectory of PMSG‐based WECS states with known and unknown actuator faults. Also, the stabilization conditions are derived in the form of linear matrix inequality to determine the control gains, which assures the maximum power output and enhance the system performance. Meanwhile, the performance index is presented with membership function, for attenuating the load torque disturbance of WECS. Finally, the superiority and benefit of presented method are validated by numerical simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.