Abstract

In this study, a fuzzy two-stage quadratic programming (FTSQP) method is developed for planning waste-management systems under uncertainty. It incorporates approaches of fuzzy quadratic programming and two-stage stochastic programming within a general optimization framework, to better reflect uncertainties expressed as probability-density and fuzzy-membership functions. The FTSQP can be used for analyzing various policy scenarios that are associated with different levels of economic penalties when the promised policy targets are violated. Moreover, using fuzzy quadratic terms rather than linear ones, the proposed method can improve upon the existing fuzzy linear programs through (a) more effectively optimizing the general satisfaction of the objective and constraints, (b) minimizing the variation of satisfaction degrees among the constraints and leading to more robust solutions, and (c) reflecting the trade-off between the system cost and the constraint-violation risk. The developed method is applied to a case study of municipal solid waste management. The results indicate that reasonable solutions have been generated. They will allow in-depth analyses of trade-offs between environmental and economic objectives as well as those between system cost and decision-maker's satisfaction degree.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.