Abstract

The transportation problem is a main branch of operational research and its main objective is to transport a single uniform good which are initially stored at several origins to different destinations in such a way that the total transportation cost is minimum. In real life applications, available supply and forecast demand, are often fuzzy because some information is incomplete or unavailable. In this article, the authors have converted the crisp transportation problem into the fuzzy transportation problem by using various types of fuzzy numbers such as triangular, pentagonal, and heptagonal fuzzy numbers. This article compares the minimum fuzzy transportation cost obtained from the different method and in the last section, the authors introduce the Lagrange's polynomial to determine the approximate fuzzy transportation cost for the nanogon (n = 9) and hendecagon (n = 11) fuzzy numbers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.