Abstract

Transfer learning is gaining considerable attention due to its ability to leverage previously acquired knowledge to assist in completing a prediction task in a related domain. Fuzzy transfer learning, which is based on fuzzy system (especially fuzzy rule-based models), has been developed because of its capability to deal with the uncertainty in transfer learning. However, two issues with fuzzy transfer learning have not yet been resolved: choosing an appropriate source domain and efficiently selecting labeled data for the target domain. This paper proposes an innovative method based on fuzzy rules that combines an infinite Gaussian mixture model (IGMM) with active learning to enhance the performance and generalizability of the constructed model. An IGMM is used to identify the data structures in the source and target domains providing a promising solution to the domain selection dilemma. Further, we exploit the interactive query strategy in active learning to correct imbalances in the knowledge to improve the generalizability of fuzzy learning models. Through experiments on synthetic datasets, we demonstrate the rationality of employing an IGMM and the effectiveness of applying an active learning technique. Additional experiments on real-world datasets further support the capabilities of the proposed method in practical situations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.