Abstract
We describe a construction of fuzzy spaces which approximate projective toric varieties. The construction uses the canonical embedding of such varieties into a complex projective space: The algebra of fuzzy functions on a toric variety is obtained by a restriction of the fuzzy algebra of functions on the complex projective space appearing in the embedding. We give several explicit examples for this construction; in particular, we present fuzzy weighted projective spaces as well as fuzzy Hirzebruch and del Pezzo surfaces. As our construction is actually suited for arbitrary subvarieties of complex projective spaces, one can easily obtain large classes of fuzzy Calabi-Yau manifolds and we comment on fuzzy K3 surfaces and fuzzy quintic three-folds. Besides enlarging the number of available fuzzy spaces significantly, we show that the fuzzification of a projective toric variety amounts to a quantization of its toric base.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.