Abstract
Dodson-Zeeman fuzzy topology considered as the possible mathematical framework of geometric quantum formalism. In such formalism the states of massive particle m correspond to elements of fuzzy manifold called fuzzy points. Due to their weak (partial) ordering, m space coordinate x acquires principal uncertainty σx. It’s shown that m evolution with minimal number of additional assumptions obeys to schroedinger and dirac formalisms in norelativistic and relativistic cases correspondingly. It’s argued that particle’s interactions on such fuzzy manifold should be gauge invariant.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.