Abstract

Application of plant growth regulators (PGRs) is a novel strategy for allay of the adverse effects caused by biotic/abiotic stresses. However, no studies have vividly executed mathematic evaluation for the assessment of various PGRs on root phenotype traits (RPTs) against pollutants. In the present study, a microcosm hydroponic experiment was conducted to examine responses of RPTs under SCN− (0, 24, 96, and 300 mg SCN/L) stress in the presence of PGRs such as jasmonic acid (JA), indole-3-acetic acid (IAA), and sodium hydrosulfide (NaHS) in rice plants. Fuzzy synthetic evaluation was applied to determine the outcome of the effects of various PGRs on the RPTs under SCN− exposure. Root scanning results indicated that exogenous IAA and NaHS has the greater potential for improving the RPTs of rice seedlings under SCN− stress, while JA failed to uplift the RPTs in response to SCN− stress. Fuzzy synthetic evaluation indicated that in control plants (without SCN−), the effect of three PGRs applied on the RPTs is as follows: NaHS > IAA > JA. At 24 mg SCN/L, NaHS and IAA had consistent actuate in regulating RPTs of rice seedlings, while all PGRs amended have an affirmative impact on RPTs at 96 and 300 mg SCN/L. The present research highlights the utilization of contemporary mathematic method to screen the superior species of PGRs through the RPTs test of plants under pollutant belt.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call