Abstract
This article is concerned with the issue of quantized sliding-mode control (SMC) design methodology for nonlinear stochastic switching systems subject to semi-Markovian switching parameters, T-S fuzzy strategy, uncertainty, signal quantization, and nonlinearity. Compared with the previous literature, the quantized control input is first considered in studying T-S fuzzy stochastic switching systems with a semi-Markovian process. A mode-independent sliding surface is adopted to avoid the potential repetitive jumping effects. Then, by means of the Lyapunov function, stochastic stability criteria are proposed to be dependent of sojourn time for the corresponding sliding-mode dynamics. Furthermore, the fuzzy-model-based SMC law is proposed to ensure the finite-time reachability of the sliding-mode dynamics. Finally, an application example of a modified series dc motor model is provided to demonstrate the effectiveness of the theoretical findings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.