Abstract

This article is concerned with the issue of quantized sliding-mode control (SMC) design methodology for nonlinear stochastic switching systems subject to semi-Markovian switching parameters, T-S fuzzy strategy, uncertainty, signal quantization, and nonlinearity. Compared with the previous literature, the quantized control input is first considered in studying T-S fuzzy stochastic switching systems with a semi-Markovian process. A mode-independent sliding surface is adopted to avoid the potential repetitive jumping effects. Then, by means of the Lyapunov function, stochastic stability criteria are proposed to be dependent of sojourn time for the corresponding sliding-mode dynamics. Furthermore, the fuzzy-model-based SMC law is proposed to ensure the finite-time reachability of the sliding-mode dynamics. Finally, an application example of a modified series dc motor model is provided to demonstrate the effectiveness of the theoretical findings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call