Abstract
Abstract: A fuzzy sliding‐mode control with rule adaptation design approach with decoupling method is proposed. It provides a simple way to achieve asymptotic stability by a decoupling method for a class of uncertain nonlinear systems. The adaptive fuzzy sliding‐mode control system is composed of a fuzzy controller and a compensation controller. The fuzzy controller is the main rule regulation controller, which is used to approximate an ideal computational controller. The compensation controller is designed to compensate for the difference between the ideal computational controller and the adaptive fuzzy controller. Fuzzy regulation is used as an approximator to identify the uncertainty. The simulation results for two cart–pole systems and a ball–beam system are presented to demonstrate the effectiveness and robustness of the method. In addition, the experimental results for a tunnelling robot manipulator are given to demonstrate the effectiveness of the system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.