Abstract

This paper focuses on the controller design using fuzzy sliding mode control (FSMC) with application to electro-mechanical brake (EMB) systems using BLDC Motor. The EMB controller transmits the control signal to the motor driver to rotate the motor. The torque distribution of motors is studied in this paper actually. Firstly, the model of the EMB system is established. Then the state observer is developed to estimate the vehicle states including the vehicle velocity and longitudinal force. Due to the fact that the EMB system is nonlinear and uncertain, a FSMC strategy based on wheel slip ratio is proposed, where both the normal and emergency braking conditions are taken into account. The equivalent control law of sliding mode controller is designed on the basis of the variation of the front axle and rear axle load during the brake process, while the switching control law is adjusted by the fuzzy corrector. The simulation results illustrate that the FSMC strategy has the superior performance, better adaptability to various types of roads, and shorter braking distance, as compared to PID control and traditional sliding mode control technologies. Finally, the hardware-in-loop (NIL) experimental results have exemplified the validation of the developed methodology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.