Abstract

If the number of variables is growing the size of fuzzy rule bases increase exponentially. To reduce size and inference/control time, it is often necessary to deal with sparse rule bases. In such bases, classic algorithms such as the CRI of Zadeh and the Mamdani-method do not function. In such rule bases, rule interpolation techniques are necessary. The linear rule interpolation (KHinterpolation) based on the Fundamental Equation of Interpolation introduced by Koczy and Hirota is suitable for dealing with sparse bases, but this method often results in conclusions which are not directly interpretable, and need some further transformations. One of the possible ways to avoid this problem is the interpolation method based on the conservation of fuzziness, proposed recently by Gedeon and Koczy for trapezoidal fuzzy sets. In this paper, a refined version of that method will be presented that is fully in accordance with the Fundamental Equation, with extensions to multiple dimensions, and then to arbitrarily shaped membership functions. Several possibilities for the latter will be shown.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.