Abstract

The negative environmental impact and the rapidly declining reserve of fossil fuel-based energy sources for electricity generation is a big challenge to finding sustainable alternatives. This scenario is complicated by the ever-increasing world population growth demanding a higher standard of living. A fuel cell system is able to generate electricity and water with higher energy efficiency while producing near-zero emissions. A common fuel cell stack displays a nonlinear power characteristic as a result of internal limitations and operating parameters such as temperature, hydrogen and oxygen partial pressures and humidity levels, leading to a reduced overall system performance. It is therefore important to extract as much power as possible from the stack, thus hindering excessive fuel use. This study considers and compares two Maximum Power Point Tracking (MPPT) approaches; one based on the Mamdani Fuzzy Inference System and the other on the Particle Swarm Optimisation (PSO) algorithm to maintain the output power of a fuel cell stack extremely close to its maximum. To ensure that, the power converter interfaced to the fuel cell unit must be able to continuously self-modify its parameters, hence changing its voltage and current depending upon the Maximum Power Point position. While various methods exist for Maximum Power Point tracker design, this paper analyses the response characteristics of a Mamdani Fuzzy Inference Engine and the Particle Swarm Optimisation technique. The investigation was conducted on a 53 kW Proton Exchange Membrane Fuel Cell interfaced to a DC-to-DC boost converter supplying 1.2 kV from a 625 V input DC voltage. The modelling was accomplished using a Matlab/Simulink environment. The results showed that the MPPT controller based on the PSO algorithm presented better tracking efficiency as compared to the Mamdani controller. Furthermore, the rise time of the PSO controller was slightly shorter than the Mamdani controller and the overshoot of the PSO controller was 2% lower than that of the Mamdani controller.

Highlights

  • Fuel cells (FCs) are likely to play a key role in the current and future power industries, as they are potential candidates to replace fossil fuel-based electric generators for clean electricity production.They show great capabilities for use in microgrids [1], and unlike other green energy technologies such as wind and solar power systems, they can operate at any site without geographic limitations to provide optimal services [2]

  • The investigation was conducted on a 53 kW Proton Exchange Membrane Fuel Cell interfaced to a DC-to-DC boost converter supplying

  • The results showed that the Maximum Power Point Tracking (MPPT) controller based on the Particle Swarm Optimisation (PSO) algorithm presented better tracking efficiency as compared to the Mamdani controller

Read more

Summary

Introduction

Fuel cells (FCs) are likely to play a key role in the current and future power industries, as they are potential candidates to replace fossil fuel-based electric generators for clean electricity production They show great capabilities for use in microgrids [1], and unlike other green energy technologies such as wind and solar power systems, they can operate at any site without geographic limitations to provide optimal services [2]. Their functioning is such that energy from an electro-chemical reaction is continuously converted into electricity in the form of direct current with water and heat as by-products [3]. The most current FC technologies include Polymer Electrolytic or Proton Exchange Membrane Fuel

Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.