Abstract

The concept of the rough set was originally proposed by Pawlak as a formal tool for modelling and processing incomplete information in information systems, then in 1990, Dubois and Prade first introduced the rough fuzzy sets and fuzzy rough sets as a fuzzy extension of the rough sets. The aim of this paper is to present a new extension of the rough set theory by means of integrating the classical Pawlak rough set theory with the interval-valued fuzzy set theory, i.e., the interval-valued fuzzy rough set model is presented based on the interval-valued fuzzy information systems which is defined in this paper by a binary interval-valued fuzzy relations R ∈ F ( i ) ( U × U ) on the universe U . Several properties of the rough set model are given, and the relationships of this model and the others rough set models are also examined. Furthermore, we also discuss the knowledge reduction of the classical Pawlak information systems and the interval-valued fuzzy information systems respectively. Finally, the knowledge reduction theorems of the interval-valued fuzzy information systems are built.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.