Abstract
Ordinal classification is a common classification problem, which widely exists in multi-attribute decision making problems. The dominance-based rough set approach (DRSA) is a knowledge acquisition tool for ordinal classification tasks. Nevertheless, the existence of noise information in the collected data greatly reduces the accuracy of the DRSA and some extended model. An effective way to solve this issue is to improve the robustness of these models. In addition, most existing feature selection strategies based on dominance rough sets mainly focus on the monotonic classification consistency between features and decision, but ignoring the classification information provided by features combination. Motivated by these two issues, this paper proposes a robust fuzzy dominance rough set model to combat noise interference and develop a feature selection approach based on the proposed model for ordinal classification tasks. First, a non-linear vague quantifier is adopted to construct the robust model, and related dependency function is introduced. Second, the rank entropy based uncertainty measures are explored to characterize the contribution of features combination for ordinal classification. Based on the proposed uncertainty measures, a new feature evaluation index is presented. Meanwhile, the corresponding feature selection algorithm is designed. Finally, numerical comparative experiments are performed to indicate that the proposed model and feature selection algorithm have good capability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.