Abstract

Recent years have witnessed a drastic surge in graph representation learning, which usually produces low-dimensional and crisp representations from graph topology and high-dimensional node attributes. Nevertheless, a crisp representation of a node or graph actually conceals the uncertainty and interpretability of features. In citation networks, for example, the reference between two papers is always involved with fuzziness denoting the correlation degrees, that is, one connection may simultaneously belong to strong and weak references in different beliefs. The uncertainty in node connections and attributes inspires us to delve into fuzzy representations. This paper, for the first time, proposes an unsupervised fuzzy representation learning model for graphs and networks to improve their expressiveness by making crisp representations fuzzy. Specifically, we develop a fuzzy graph convolution neural network (FGCNN), which could aggregate high-level fuzzy features, leveraging fuzzy logic to fully excavate feature-level uncertainties, and finally generate fuzzy representations. The corresponding hierarchical model composed of multiple FGCNNs, called deep fuzzy graph convolution neural network (DFGCNN), is able to generate fuzzy node representations which are more expressive than crisp ones. Experimental results of multiple network analysis tasks validate that the proposed fuzzy representation models have strong competitiveness against the state-of-the-art baselines over several real-world datasets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call