Abstract
This work presents our research in the application of reinforcement learning algorithms for the generation of autonomous intelligent virtual robots, that can learn and enhance their task performance in assisting humans in housekeeping. For the control system architecture of the virtual agents, two algorithms, based on Watkins' Q(/spl lambda/) learning and the zeroth-level classifier system (ZLCS), are incorporated with fuzzy inference systems(FlS). Performance of these algorithms is evaluated and compared. A 3D application of a virtual robot whose task is to interact with virtual humans and offer optimal services on everyday in-house needs is designed and implemented. The learning systems are incorporated in the decision-making process of the virtual robot servant to allow itself to understand and evaluate the fuzzy value requirements and enhance its performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.